skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kirk, Martin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Mo K-edge X-ray absorption spectroscopy (XAS) is used to probe the structure of wild-type Campylobacter jejuni nitrate reductase NapA and the C176A variant. The results of extended X-ray absorption fine structure (EXAFS) experiments on wt NapA support an oxidized Mo(VI) hexacoordinate active site coordinated by a single terminal oxo donor, four sulfur atoms from two separate pyranopterin dithiolene ligands, and an additional S atom from a conserved cysteine amino acid residue. We found no evidence of a terminal sulfido ligand in wt NapA. EXAFS analysis shows the C176A active site to be a 6-coordinate structure, and this is supported by EPR studies on C176A and small molecule analogs of Mo(V) enzyme forms. The SCys is replaced by a hydroxide or water ligand in C176A, and we find no evidence of a coordinated sulfhydryl (SH) ligand. Kinetic studies show that this variant has completely lost its catalytic activity toward nitrate. Taken together, the results support a critical role for the conserved C176 in catalysis and an oxygen atom transfer mechanism for the catalytic reduction of nitrate to nitrite that does not employ a terminal sulfido ligand in the catalytic cycle. 
    more » « less
  2. Abstract The discovery of long-range magnetic ordering in atomically thin materials catapulted the van der Waals (vdW) family of compounds into an unprecedented popularity, leading to potentially important technological applications in magnetic storage and magneto-transport devices, as well as photoelectric sensors. With the potential for the use of vdW materials in space exploration technologies it is critical to understand how the properties of such materials are affected by ionizing proton irradiation. Owing to their robust intra-layer stability and sensitivity to external perturbations, these materials also provide excellent opportunities for studying proton irradiation as a non-destructive tool for controlling their magnetic properties. Specifically, the exfoliable Cr2Si2Te6(CST) is a ferromagnetic semiconductor with the Curie temperature (TC) of ∼32 K. Here, we have investigated the magnetic properties of CST upon proton irradiation as a function of fluence (1 × 1015, 5 × 1015, 1 × 1016, 5 × 1016, and 1 × 1018H+/cm−2) by employing variable-temperature, variable-field magnetization measurements, and detail how the magnetization, magnetic anisotropy vary as a function of proton fluence across the magnetic phase transition. While theTCremains constant as a function of proton fluence, we observed that the saturation magnetization and magnetic anisotropy diverge at the proton fluence of 5 × 1016H+/cm−2, which is prominent in the ferromagnetic phase, in particular.This work demonstrates that proton irradiation is a feasible method for modifying the magnetic properties and local magnetic interactions of vdWs crystals, which represents a significant step forward in the design of future spintronic and magneto-electronic applications. 
    more » « less
  3. null (Ed.)
    Calculated conductance through Au n –S–Bridge–S–Au n (Bridge = organic σ/π-system) constructs are compared to experimentally-determined magnetic exchange coupling parameters in a series of Tp Cum,Me ZnSQ–Bridge–NN complexes, where Tp Cum,Me = hydro-tris(3-cumenyl-1-methylpyrazolyl)borate ancillary ligand, Zn = diamagnetic zinc( ii ), SQ = semiquinone ( S = 1/2), and NN = nitronylnitroxide radical ( S = 1/2). We find that there is a nonlinear functional relationship between the biradical magnetic exchange coupling, J D→A , and the computed conductance, g mb . Although different bridge types (monomer vs. dimer) do not lie on the same J D→A vs. g mb , curve, there is a scale invariance between the monomeric and dimeric bridges which shows that the two data sets are related by a proportionate scaling of J D→A . For exchange and conductance mediated by a given bridge fragment, we find that the ratio of distance dependent decay constants for conductance ( β g ) and magnetic exchange coupling ( β J ) does not equal unity, indicating that inherent differences in the tunneling energy gaps, Δ ε , and the bridge–bridge electronic coupling, H BB , are not directly transferrable properties as they relate to exchange and conductance. The results of these observations are described in valence bond terms, with resonance structure contributions to the ground state bridge wavefunction being different for SQ–Bridge–NN and Au n –S–Bridge–S–Au n systems. 
    more » « less